Una vez enlazadas, propiedades tales como la polarización o spin - darán el mismo resultado para ambas partículas, sin importar la distancia que las separe y sin que ninguna otra señal pase físicamente entre las mismas.
La teletransportación cuántica no copia los fotones en sentido estricto. Lo que los científicos hicieron fue entrelazar algunos fotones en La Palma y luego emplear un laser de alta potencia para enviar uno de ellos a la estación receptora en Tenerife. Después, cuando se altera el estado cuántico de uno de los fotones, el estado cuántico del otro se altera inmediatamente - más rápido que la velocidad de la luz - y de la misma forma, a pesar de estar separados por 143 km. No se transporte entonces la materia misma del fotón, sino su estado.Según Eric Wille, que supervisa el proyecto para la ESA, “Este hallazgo abre nuevas fronteras par alas comunicaciones cuánticas a larga distancia.../... La primera teletransportación cuántica se hizo en condiciones de laboratorio. Aquí el reto era mantener el enlazamiento entre dos fotones separados por 143 km, de manera que pudieran servir para la teletransportación cuántica, a pesar de las perturbaciones atmosféricas”
Un primer intento falló en 2011 debido a un tiempo excepcionalmente malo. Las dos estaciones, situadas en volcanes a 2400 m por encima del nivel del mar, sufren duras condiciones meteorológicas, lluvia, niebla, fuertes vientos e incluso nieve y tormentas de arena.
El exprimento tuvo lugar en mayo de 2012 y estableció un nuevo record en teletransportación cuántica. Como ha dicho el Dr Rupert Ursin de la Academia Austriaca de Ciencias, “el siguiente paso será el lograr la teletransportación cuántica con un satélite en órbita, demostrando la utilidad de la comunicación cuántica a nivel global”
La campaña fue subvencionadad por la Agencia Espacial Europea dentro de su Programa de Estudios generales para demostrar la utilidad de la teletransportación cuántica a larga distancia para futuras misiones espaciales, y es también un excelente ejemplo de cooperación científica internacional.
An international research team (Austria, Canada, Germany and Norway ) set a new distance world record in ‘quantum teleportation’ at open air by reproducing the characteristics of a photon onto its ‘entangled’ partner via quantum teleportation, thereby bridging a distance of 143 km between the Jacobus Kapteyn Telescope on La Palma Canary Islands) and ESA’s Optical Ground Station on adjacent Tenerife. Their results have been published in this week’s Nature Magazine.
Once entangled, the measurement of a certain property – such as polarisation or spin – will yield the same result for both particles, no matter how far apart the particles are located, and without any further signal being physically passed between them.
Quantum teleportation is not copying in the strictest sense Basically, the scientists entangled some photons in La Palma, and then used a high-powered laser to fire one of those photons across the sea to a receiving station in Tenerife. Then, when the quantum state of one photon is altered, the quantum state of the second photon — despite being 90 miles away — is immediately altered, faster than the speed of light, without even the smallest of delays. In essence, we’re talking about quantum state teleportation — rather than the teleportation of actual matter.“This achievement breaks new ground for long-distance quantum communications,” explained Eric Wille, overseeing the project for ESA. “The first quantum teleportation took place in laboratory conditions. The challenge here was to maintain the entanglement between two photons separated by 143 km, despite being perturbed by atmospheric conditions, such that it could still be used for quantum teleportation.”
A first attempt in 2011 failed due to exceptionally bad weather. The two telescope stations located on the volcanoes 2400 m above sea level have to face harsh conditions, including rain, fog and strong winds or even snow and sand storms.
The experiment finally took place in May 2012, establishing a new record for the teleportation distance. “The next step would really be to achieve quantum teleportation to a satellite in orbit to demonstrate quantum communication on a global scale” commented Dr Rupert Ursin of the Austrian Academy of Sciences.
The inter-island measurement campaign was commissioned by ESA within its General Studies Programme in order to demonstrate the feasibility of long-distance quantum teleportation for future space missions and it is also an excellent example of international scientific cooperation.
Tomado de/Taken from ESA ; Extreme Tech
Resumen de la publicación/ Abstract of the paper
Quantum teleportation over 143 kilometres using active feed-forwardXiao-Song Ma, Thomas Herbst, Thomas Scheidl, Daqing Wang, Sebastian Kropatschek, William Naylor, Bernhard Wittmann, Alexandra Mech, Johannes Kofler, Elena Anisimova, Vadim Makarov, Thomas Jennewein, Rupert Ursin Anton Zeilinger
Nature (2012)doi:10.1038/nature11472 Published online 05 September 2012
Abstract
The quantum internet is predicted to be the next-generation information processing platform, promising secure communication and an exponential speed-up in distributed computation. The distribution of single qubits over large distances via quantum teleportation is a key ingredient for realizing such a global platform. By using quantum teleportation, unknown quantum states can be transferred over arbitrary distances to a party whose location is unknown. Since the first experimental demonstrations of quantum teleportation of independent external qubits, an internal qubit and squeezed states, researchers have progressively extended the communication distance. Usually this occurs without active feed-forward of the classical Bell-state measurement result, which is an essential ingredient in future applications such as communication between quantum computers. The benchmark for a global quantum internet is quantum teleportation of independent qubits over a free-space link whose attenuation corresponds to the path between a satellite and a ground station. Here we report such an experiment, using active feed-forward in real time. The experiment uses two free-space optical links, quantum and classical, over 143 kilometres between the two Canary Islands of La Palma and Tenerife. To achieve this, we combine advanced techniques involving a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors and entanglement-assisted clock synchronization. The average teleported state fidelity is well beyond the classical limit of two-thirds. Furthermore, we confirm the quality of the quantum teleportation procedure without feed-forward by complete quantum process tomography. Our experiment verifies the maturity and applicability of such technologies in real-world scenarios, in particular for future satellite-based quantum teleportation.
No hay comentarios:
Publicar un comentario